This regression time: ↑
next time: ANOVA

 homework 4 due Fri 22 Jul in class
 take-home final due Mon 25 Jul noon
 extra office hours:
 Mon 25 Jul 9A - 10A
 take elevator to 3rd floor Baskin: door open
 Sat 23 Jul noon - 1 pm
 Sun 24 Jul noon - 1 pm
 Sat 4D 23 Jul 2-3 pm
 Sun 4D 24 Jul 2-3 pm

y
Galton
(e. 1890)

SD line: best for capturing the trend of (x, y) pairs
regression line for predicting y from x
reg. line for prev. x from y
\[\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x \]

make predictions for \(\hat{y} \)

\[\text{sum} \left(y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i) \right)^2 \]

\[\hat{\beta}_0, \hat{\beta}_1 \text{ to minimize} \]

\[\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \]

Calculation: least squares line

least squares

least squares
harder to estimate \(\beta \). Here to judge whether a sample slope \(\beta \) is large in practical terms, use exactly the same line of reasoning as with the sample correlation \(r \).
how useful is the regression!

predictive task

0) ignore x
or don't measure it:

predict

\[
y: \hat{y} = \frac{y}{\text{no x}}
\]

with \(SE(\hat{y}) = \sigma_y \)
predictive task 2: use x to predict y:

\[\hat{y} = \beta_0 + \beta_1 x \]

with $\hat{SE}(\hat{y}_{pred}) = \hat{y} \sqrt{1-r^2}$

This is smaller than $SE(\hat{y}_{nox})$.
A residual plot

A scatter plot

Healthy residual plot: no trend or pattern
\[y = \text{height} \]
\[x = \text{trunk diameter} \]
\[y = \beta_0 + \beta_1 x + \epsilon \]

\[y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_k x_{ik} + \epsilon_i \]

Can generalize least squares to get estimates:

\[\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \ldots + \hat{\beta}_k x_{ik} \]
$$
\begin{bmatrix}
 y_1 \\
 y_2 \\
 \vdots \\
 y_n
\end{bmatrix}

\begin{bmatrix}
 x_{11} & x_{12} & \cdots & x_{1k} \\
 x_{21} & x_{22} & \cdots & x_{2k} \\
 \vdots & \vdots & \ddots & \vdots \\
 x_{n1} & x_{n2} & \cdots & x_{nk}
\end{bmatrix}

\begin{bmatrix}
 \beta_0 \\
 \beta_1 \\
 \beta_2 \\
 \vdots \\
 \beta_k
\end{bmatrix}

\text{if}
$$

Is the regression useful?

Compute

$$R^2 = \frac{\text{multiple R}^2}{\text{coefficient of determination}}$$

Want to