R-cell. \[\frac{32 - 29.8}{29.8} = \frac{M_a - \bar{y}}{y} = \frac{2.2}{29.8} = 7.4\% \]

Theory \(M_a \) is 7.4\% more than the \(\bar{y} \).

To see sig - ask expert if 7.4\% is sig.

(b)

Population
- all arthropods in this species that are similar to the sample
- calcium levels unknown

Sample
- observed arthropods
- calcium levels known: \(\bar{y} = 29.8 \), \(s = 1.8 \)

Imaginary data
- all possible \(\bar{y} \)s
- \(n \to \infty \)
- mean \(\bar{y} \)
- \(SE(\bar{y}) = \frac{s}{\sqrt{n}} = 0.5 \)

We know about sample, wondering about population \(\Rightarrow \) stat. inference

(Vice versa is probability)

<table>
<thead>
<tr>
<th>Unknown pop quant</th>
<th>(M =) pop me</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample estimate (M)</td>
<td>(\bar{y} = 29.8)</td>
</tr>
<tr>
<td>give (t) as est. (M)</td>
<td>(SE(\bar{y}) = 0.5)</td>
</tr>
<tr>
<td>95% CI (M)</td>
<td>(29.8 \pm 1.1)</td>
</tr>
</tbody>
</table>
t curve w/ 12 degrees of freedom $(n-1)$

95% area in middle

0.05

2.179

$\bar{y} \pm t \frac{s}{\sqrt{n}}$

$= 29.8 \pm 1.1$

$M_0 = 32$ is not in 95% interval t is not supported by the data.

$M - \bar{y}$ is statistical. $32 - 29.8$ is big difference.

This difference is hard to attribute to an unlucky random sample - this means that this difference is probably real.