\[
\bar{y} = \frac{1}{n} \sum_{i=1}^{10} y_i \quad \text{sum} = \frac{\#}{10}
\]

If we want to know proportion of litters (6+ pups)
\[
\text{Pups to litters} \quad y_i = \text{if litter > 6} \quad \text{sum} = \frac{\text{Pups}}{n}
\]

Standard Deviation: distribution of data around
\[
S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2 \quad \text{mean} \quad \frac{n}{\sum_{i=1}^{n} y_i}
\]
\[
S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2}
\]

If multiply data points by a #, mean will be \# \# add #, mean will be + #

Affects mean, not standard deviation

We have (n-1) degrees of freedom for a spread with n. \(\left[\frac{\chi^2}{x} \right] n=3 \)