New Draper Office Hours: MWF 11:45-12:45
BE 367C

Standard Deviation:
Empirical Rule: helps to estimate SD

ex.
SD 0? too small
SD 50? too large (all graph)

\[
\begin{array}{c}
\text{mean} \\
30 \\
50 \\
70 \\
\text{mean} + 2 \text{SDs}
\end{array}
\]

Should be \(\approx 95\% \): no, still too small

SD = 20, looks about right

\[
\begin{array}{c}
\text{mean} \\
10 \\
30 \\
50 \\
50 + (2 \cdot 20)
\end{array}
\]

Empirical Rule for estimating SD
always starting at the mean: should capture:
go 1 SD either way 2/3 of data, 68%
go 2 SD either way most/95% of data
go 3 SD either way tail 99.7% of data
Normal Curve / Gaussian Distribution

\[f(y) \]

Looking at our butterfly data set -
What % \(\leq 3.56 \) cm?
\(\sim 8\% \)
Count 2124 = 8.3%
This is the exact answer.

If we want the approximate answer:

The normal curve is dependent on the value of the mean and the SD.

Standard Normal Curve

Using Empirical Rule

\(\sigma = 1 \)
mean: 0

Using the Empirical Rule:
68% \(\sigma \leq 1 \)
68% \(\sigma \leq 2/3 \) yes, part 1

\(\{ \text{See pages L-34 and L-36 for Standard Normal Table. Table gives decimals} \} \)

FACTS:
1. All normal curves are symmetric
2. Total area under each normal curve is 100% = 1
3. All normal curves satisfy Empirical Rule exactly
Bc curve is symmetric, area to left of $-1 = area right of $+1$; both $= 16\%$

Total area must add up to 100%.

To calculate the actual value for the area under curve $[1, 1]$

$100\% - (2 \cdot 16\%) = 68\%$

$84\% - 16\% = 68\%$

Should be equal!

Example:

Wing Length

$X = \frac{3.66 \text{cm} - 4.0 \text{cm}}{0.3 \text{cm}} = \frac{\# - \text{mean}}{\text{SD}}$

$= -1.47 = X$

So now we want to know area to left of -1.47.

\(\text{(Standard units } z)\)

\[\text{Converting to std units } \frac{Y - \bar{Y}}{s}\]

\(\text{Note: units should cancel, no units}\)
Using negative chart,
\(-1.4 \quad 0.07 \rightarrow 0.0708 \approx 7\%

Section 2: Experimental Design

Controlled Experiment = control group (C) and a treatment group (T), and the experimenters control who goes into which group(s).

"Is this difference practically significant?"
Comparing Data 1 absolute 2 percentage

We want the subjects in T to be similar to C (as similar as possible) in all relevant ways except for the T/C distinction.

To encourage similarity: randomize

Randomized Controlled Trial (RCT) Experiment
Flowchart for Classifying Experimental Designs

Was a comparison made between 2+ treatment groups? no → "experience not experiment" (neither)
o → observational study: vital to control for PCFs

Did investigators have control over who got into T and C groups no →

Controlled Experiment: Did investigators assign subjects to T and C at random? no →

judgmental allocation: suspect bias

yes → Randomized Controlled Trial: strongest design

Bias: systematic tendency to over/underestimate the truth
Back to the cortex experiment

\[Y \quad \text{outcome} \quad : \quad \text{cortex weight} \]
\[X \quad \text{treatment} \quad : \quad T \quad \text{vs} \quad C \quad 1/0 \]
\[Z \quad \text{potential confounding factor (PCF)} \]
\[\text{Genetic background} \]

Positively associated: \(u \uparrow, v \uparrow \) on avg (vice versa)
Negatively associated: \(u \uparrow, v \downarrow \)

PCF: in an experimental setting w/ treatment variable \(X \) and outcome variable \(Y \), any third variable \(Z \) may plausibly be associated both w/ \(X \) and \(Y \)

ex. \(Y \) (outcome): cortex weight \(X \) (treatment) \(C: \text{depriv} \)
\(Z \) (genetics) \(\uparrow \quad \uparrow \quad \checkmark \)
\(Z \uparrow \quad \uparrow \quad \uparrow \quad \checkmark \)

PCFs are the enemy in experimental design bc they cause bias in conclusions.

How to defeat PCFs?
Hold them **CONSTANT** in TIC comparison.